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1 Introduction

During this six month period our work concentrated on three, somewhat dif-

ferent areas. We looked at and developed a number of error concealment

schemes for use in a variety of video coding environments. This work is de-

scribed in an accompanying (draft) Masters thesis. In the thesis we describe

application of this techniques to the MPEG video coding scheme. We felt

that the unique frame ordering approach used in the MPE(] scheme would

be a challenge to any error concealment/error recovery technique.

We continued with our work in the Vector Quantization area. The work

on recursively indexed Vector Quantization will be reported in a PhD dis-

sertation (luring the current period. We have also developed a new type of

Vector Quantizer, which we call a Scan Predictive Vector Quantization. The

Scan Predictive VQ was tested on data processed at Goddard to approxi-

mate Landsat 7 HRMSI resolution, and compared favorably with existing

VQ techniques. A paper describing this work is included with this report.

The paper has been submitted to IEEE Transactions on Image Processing.

The third area is concerned more with reconstruction than compression.

While there is a variety of efficient lossless image compression schemes, they
all have a common property that they use past data to encode future data.

This is done either via taking differences, context modeling or by building

dictionaries. When encoding large images, this common property becomes a

common flaw. When the user wishes to decode just a portion of the image,

the requirement that the past history be available forces the decoding of a

significantly larger portion of the image than desired by the user. Even with

intelligent partitioning of the image dataset, the number of pixels decoded

may be four times the number of pixels requested. We have developed an

adaptive scanning strategy, which can be used with any lossless compression

scheme, and which lowers the additional number of pixels to be decoded

to about 7% of the number of pixels requested[ A paper describing these
" results is included in tt_t.t. _This work will be reported at the 1994

international Geoscience and Remote Sensing Symposium.

During this period, the following paper appeared in print

" Coding of Color-Mapped Images," (with A.C. Hadenfeldt), [EEE Trans-

actions on Geoscience and Remote Sensing, vol. 32, pp. 534-541, May 1994.
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A copy of the paper is included with this report.

Also during this period, the following paper was accepted for publication

"A Constrained Joint Source Channel Coder Design," (with F. Liu and

J.D. Gibson), to appear in [EEE Journal on Selected Areas of Communi-
cation.
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In packet switched networks, even with error correction protection, packet loss is

unavoidable. Hence a method of error recovery, which takes the characteristics of the

video signals into account, is required. This process, known as Error Concealment,

attempts to recover or reconstruct the missing blocks from the structured picture

data. A method of error concealment based on the motion estimation is proposed

in this paper. This method makes use of the fact that most of the frames look

alike (excepting during the shifts) and hence uses the past as well as the future

information to reconstruct the missing information in a frame (in addition to the

information from the same frame).

The underlying assumptions in this method of error concealment are

• pixels in the image are much smaller than any of the important details

• most of the pixels' neighbors represent the same structure.

_= vii
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Chapter 1

i

Introduction

For multimedia communication and information services, the evolution of asyn-

chronous transfer mode (ATM) networks based on packet switching represents the

flexibility and freedom in maintaining the quality of these services Packet switched

networks were originally invented for carrying burst-type data as it was uneconom-

ical to use continuously connected circuit. In conventional circuit switched con-

nections a dedicated path is established and a bandwidth is assigned in advance.

Quality of service would degrade if the channel capacity were to exceed, while the

excess channel capacity would be wasted if the output rate of the source were less

than the channel capacity. Packet video is a relatively new field and has attracted

a lot of attention. As image information representing detail, motion, etc. varies,

variable bit rate (VBR) coding tailored for packet switched networks can be utilized

to maintain constant image quality. Also by channel sharing among multiple video
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Chapter 1. Introduction

sources, transmission efficiency could be improved.

The flex.ibility of packet switching provides new opportunities for video com-

munication and at the same time it also presents new challenges. The problems

inherent in this scenario are packet loss and packet delay. The former can be due

to random bit errors in the packet destination address and heavy traffic at certain

nodes in ATM network, while the latter is caused by holding of packet at any of the

switching nodes until a slot is open, resulting in a differential transmission delay be-

tween packets. The differential delay causes problems in timing relationship between

video generation and reconstruction for display. Hence it is necessary to incorporate

error correction protection into coding techniques compatible with packet video. A

simple method to incorporate error protection scheme is to generate parity packets

containing parity bits generated from the information packets. A lost packet could

hence be recovered by initiating error protection at the receiver. This scheme how-

ever increases the rate and hence contributes to packet loss. It has been observed

however, that the error correction ability of the error protection system more than

makes up for the packet loss introduced by the increased rate.

In packet switched networks, even with error correction protection, packet loss

is unavoidable and a correction method is required for video packet transmission,

which takes characteristics of video signals and video coding into account. In this

method the receiver detects the damaged picture caused by the lost packet and

performs error concealment. This thesis proposes an error concealment method for

2
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Chapter 1. Introduction

video packets lost during transmission.

Chapter 2 describes various image compression techniques. Broadly these are

classified into spatial domain techniques and frequency domain techniques. Advan-

tages and disadvantages of each of these techniques are discussed in this chapter.

Chapter 3 describes various components of a basic video codec suitable for packet

video. It also briefly describes how error correction protection can be incorporated

into the coding algorithm.

Chapter 4 presents various error concealment and reconstruction algorithms. A

new algorithm for error concealment based on estimation motion from frames both

in the past and the future is presented. The performance of this method together

with the results and its limitations on two motion sequences are presented.

Chapter 5 presents the conclusion.
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Chapter 2

Understanding Image

Compression

The goal of data compression of images is to reduce transmission and storage costs.

To achieve compression it is necessary to consider representations beyond simple

analog to digital conversion of image data. Several other factors such as high corre-

lation between adjacent pixels have to be taken into consideration while compress-

ing images (spatial domain compression). In addition, correlation between adjacent

frames, has to be taken into consideration while compressing motion sequences. In

this chapter we discuss various image coding techniques mostly applicable to moving

images.

4
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2.1 Understanding Digital Images

It has been known for quite some time that a wide spectrum of colors can be gener-

ated from a set of three primaries: red, yellow and blue. Television displays generate

colors by mixing lights of the additive primaries. The color space obtained through

combining the three colors can be determined by drawing a triangle on a special

color chart with each of the base colors as an endpoint. This classic color chart was

established by Commission Internationale de L'Eclairage (CIE).

One of the special concepts introduced by 1931 CIE chart was the isolation of

luminance (brightness) from chrominance (hue). Using the guidelines of CIE the

National Television System Committee (NTSC) defined picture transmission in the

form of luminance and chrominance components. The new color space was labeled

YIQ, where the Y stood for the luminance component while the I and the Q stood

for the in-phase component and quadrature component of chrominance respectively.

In Europe two television standards later emerged, Phase-alternation-line (PAL)

format and S_quentiel coulenrh and m_moire (SECAM) format, both with identical

color space, YUV. The difference between the PAL/SECAM YUV color space and

the NTSC YIQ color space is a 33 degree rotation in UV space. The YUV format

as well as the YIQ format concentrates most of the image information into the

luminance and less into the chrominance. The result is that each of the individual

components can be coded individually without much loss of efficiency.
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2.1.1 File Formats

m

There are two formats for PAL-style input: CIF, representing an input file of

352x288 for the luminance and 176x144 for the chrominance components; and

QCIF, representing an input file of 176x144 for the luminance and 88x72 for the

chrominance components. For NTSC images the most common input style is the

CIF-style which represents an input fire of 352x240 for the luminance and 176x 120

for each of the chrominance components.

w

2.2 Intra Frame Processing

w

W

2.2.1 Spatial Domain Methods For Image Compression

In this section we consider digital coding techniques that operate on the data in the

spatial domain.

Pulse Code Modulation (PCM)

In pulse code modulation the incoming video signal is sampled and quantized. Hence

it is just a digital representation of the original analog signal. This method of coding

does not consider the inter-pixel correlation while coding the image sequences.

w
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Predictive Coding

In PCM, successive inputs to the quantizer are treated independently, so there is no

exploitation of the significant redundancy present in images.

The philosophy behind predictive coding is to remove redundancy between suc-

cessive samples of input data and to quantize only the new information. The most

common example of a predictive coding system is Differential Pulse Code Modu-

lation (DPCM). In DPCM, the difference between successive samples is quantized

and transmitted as opposed to other coding schemes where the original samples are

quantized. This scheme works well for images since there is a lot of correlation

between adjacent pixels [1].

The basic equations describing DPCM are, (see Figure 2.1)

d(_) = _(n) - _(n) (2.1)

_(,_) = d(_)- q(_) (2.2)

and y(n) = fc(n)+ v(n) (2.3)

where y(n) is the DPCM approximation to coder input x(n), d(n) is the prediction

error, q(n) is the quantization error, u(n) is the quantized prediction error, and v(n)

is the quantized prediction error which may have been corrupted by channel noise

[2l.
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Figure 2.1: Block diagram of DPCM: (a) Coder and (b) Decoder
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2.2.2 Transform Coding

An alternative to predictive coding is transform coding. Discrete Cosine Transform

(DCT) is the most commonly used transform coding technique in which square

subregions in the image are processed with a discrete cosine transform. Conceptually

a one dimensional DCT can be thought of as taking the Fourier Transform of an

infinite sequence (see Figure 2.2). For a spatial image f(z, y) the two-dimensional

discrete cosine transform F(u, v) is given by

r(u, v) = 4C(u)C(v)) N-_ N-__v_ _ _ i(i,j)cos
i=0 j=0

(2x -k 1)_'u (2y + 1)a'v
cos (2.4)2N 2N

The inverse transform is given by

N-IN-1

f(u,v)= _ _ c(,_)C(v)F(u,,,)cos
u_O v=O

(2i + l)uw (2j + l)vzr
cos (2.5)2N 2N

where

C(w)= / 1/v/-(2) forw=O
1 for w = 1,2,.--,N - 1

where N is the width of the image block, the range for u and v is from 0 to N-1.

The reason behind using DCT is that for correlated or low frequency sources the

DCT tends to concentrate the energy into a very few coefficients. The coefficients

containing most of the energy can be used to approximate the source output. Images

tend to have large regions of low spatial frequency. This makes the DCT a very useful

transform to use with images.
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DCT-Based Compression

Figures 2.3 and 2.4 show the key processing steps which are the heart of the DCT-

based models of operation. These figures illustrate the compression of a grayscale

image. As can be seen from the Figure 2.3 each of the 8 X 8 blocks of the image

makes its way through each of the processing steps and gets compressed. Color im-

age compression can be thought of as multiple grayscale images being compressed

entirely (i.e., all the componenets) or one at a time.

w The DCT is related to the Discrete Fourier Transform (DFT) [3]. Each of the

NXN block is a N 2 point discrete signal. The FDCT takes such a signal as its input

and decomposes into N 2 orthogonal basis signals. The DCT coefficient values can

thus be regarded as the relative amount of the 2D spatial frequencies contained in

the N2-point input signal. The coefficient with zero frequency in both dimensions

is called the "DC coefficient" and the remaining coefficients are called the "AC

coefficients".

At the decoder the IDCT reverses this processing step. It takes N 2 DCT coef-

ficients and reconstructs the N×N block. In principle, the DCT introduces no loss

to the source image samples; it merely transforms them to a domain in which they

can be more efficiently encoded.



Chapter2. Understanding Image Compression 12

8X8 blocks

/

Source Image

Data

DCT-Based Encoc_r

I_ Quaint.or-
[

Table

Specifications

Corn pt_r, ecl Image

Data

Figure 2.3: DCT-Based Encoder Processing steps
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Figure 2.4: DCT-Based Decoder Processing steps
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2.3 Inter Frame Processing

The amount of compression possible by spatial processing alone is limited. A very

high degree of temporal correlation exists whenever there is little motion in the

scene. Even if there is movement, high correlation may still exist depending on the

spatial characteristics of the image.

2.3.1 Motion Compensation Estimation

In any temporal compression scheme the signal is compressed by first predicting how

the next frame will appear and then sending the difference between the prediction

and the actual image. A reasonable prediction would be the previous frame. This

sort of temporal differential encoding is very similar to Differential Pulse Code Mod-

ulation (DPCM) and performs very well when the motion between adjacent frames

is insignificant. If there is significant motion however this scheme would perform

worse than if the next frame had simply been coded by itselfl

Motion compensation and estimation is a process of improving the performance

of any temporal compression scheme when motion occurs. In this procedure, dis-

placement needs to be calculated between the previous frame and the present frame.

If this information is known at the decoder site, then the previous frame can be

shifted or displaced in order to obtain a more accurate prediction of the next frame

that has yet to be transmitted. Motion displacement could be generated on a frame,

partial frame or a pixel basis. Motion vectors (displacement) are generally calculated
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on a partial frame basis (with the area of the portion chosen to equal a superblock)

since, it would be too expensive (to calculate the motion vector at the encoder and

provide the information to the decoder) on a pixel basis while, it is not very useful

to generate a single motion vector for an entire frame. The dimensions of the super

block vary from implementation to implementation.

The process of displacing portions of a previous frame in order to predict the

next frame is shown in figure 2.5.

2.4 Rate Buffer Control

Since the output rate for channel transmission is fixed while the data is variable

length huffman coded, it is necessary to rate buffer control the output. This rate

buffer is normally implemented as a one frame FIFO (First In First Out) after the

huffman coder.

The FIFO input rate is continuously monitored and the quantization level is ad-

justed to prevent buffer overflow or underflow. As the quantization level is decreases

the block length increases and the FIFO input rate increases while an increase in

quantization level causes the block length to decrease and hence the FIFO input

rate to decrease.
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Designing A Video Codec

3.1 A Basic Video Coder

A basic video coder has five stages: a motion compensation stage, a transforma-

tion stage, a lossy quantization stage, and two lossless coding stages. The motion

compensation like DPCM takes the difference between the present image and the

previous image if they are alike. The transform concentrates the information in

a few coefficients, the quantizer is responsible for selecting the high energy DCT

coefficients. The two coding stages compress the data close to their symbol entropy.

This coding stage is considered lossy since the reconstructed image is not exactly

the same as the original image (due to the quantizer). Lossless coders (without

quantization stage) have been found to achieve very poor compression.

The frame work of a basic video codec is given in the Figure 3.1

16
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3.1.1 Motion Compensation Estimation

18

Since most frames in an image sequence look alike (excepting during the shifts due

to movement) the difference between the blocks are coded rather than the blocks

themselves. The motion compensation model for a basic codec is shown in the

Figure 3.2

The motion compensation model (shown in the Figure 3.2) separates the mo-

tion sequences into three different types of frames: intraframes, which are coded

without any prediction; forward predicted frames, which are predicted based on the

intraframes; bidirectionally predicted frames , which are predicted based on either

the intraframes or the forward predicted frames.

3.1.2 Transform Stage

The transform stage is used to concentrate the energy into a few coefficients of the

block. The image is normally divided into small blocks to simpIify the complexity

of this stage. The transform method chosen by CCITT is the two dimensional 8 by

8 DCT. The formula for two dimensional 8 by 8 DCT can be written as

7 7

(2i + 1)rru (2j + 1)a'vF(u, v) = (1/4)C(u)C(v) _ _ f(i,j) cos cos
i=o j=o 16 16 (3.1)
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Figure 3.2: The Motion Compensation Model For A Simple Codec
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where
(

C(x)= _ 1/V/_2) for w---0

[ 1 for w= 1,2,...,7

The output of 8 by 8 DCT is in such a way that the average value of the block (DC

coefficient) is in the upper left corner. Progression from left to right represents the

increasing number of vertical edges, while progression from top to bottom represents

increasing number of horizontal edges.

The inverse 2D DCT can be written as

7 7
(2i + 1)urr (2j + 1)v_rf(u,v) = c(u)C(v)F(u,v)cos cos (3.2)

,,=o,.,=o 16 16

3.1.3 Quantization

The DCT coefficients are quantized to increase the number of zero valued coeffi-

cients. The DCT blocks are quantized with the DC and the AC terms separately.

Quantization is the Iossy stage in the coding scheme. The image quality deteriorates

if the quantization is too coarse, while useless bits coding noise have to be spent if

the quantization is too fine.

3.1.4 Coefficient Scanning

The quantized DCT coefficients are arranged in a zig-zag pattern (see Figure 3.3).

Zig-zag pattern scanning arranges the DCT coefficients in ascending frequency order.

The assumption behind zig-zag pattern scanning of DCT coefficients is that the
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lower frequency components tend to have higher values than the higher frequency

components. In images the high frequency DCT coefficients are normally zero.

Hence, zig-zag pattern scanning helps in accumulating zeroes towards the end of

the block and helps in reduction of transmitted coefficients.

The DC coefficients are encoded by the number of significant bits followed by

the bits themselves, while the AC coefficients are encoded based on the number of

zeroes before the next non-zero coefficient.

The inverse run-length coder translates the coded stream into either a DC co-

efficient or a run-length followed by an AC coefficient. The zero coefficients (based

on the run length) ) are appended into the buffer followed by the non-zero AC

coefficients.

3.1.5 Entropy Coding

The final processing step for a basic video codec is entropy coding. This step achieves

additional (lossless) compression based on the statistical characteristics of the quan-

tized DCT coefficients. The most commonly used entropy coding scheme is Huffman

coding. To compress data symbols, the Huffman coder creates shorter codes for fre-

quently occurring symbols and longer codes for occasionally occurring symbols.



Chapter 3. Designing A Video Codec 22

AC Ooefficient Sta_

DC Coefficient

0

1

2

Vedical 3
Frequency

4

5

6

7

Horizontal
Frequency

0 1 2 3 4 5 6 7

" )" /- 7 /-z/-7

_///////A
//////)

(,//////!A
v//////)

(/1//////v/// //]
/_J /j ./'__/ /

#

AC Coefficient End

Figure 3.3: The DCT transform
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• the probability of losing a single packet is higher than the probability of losing

more than one packet. Hence most of the time only a single packet is lost

(even after taking the increased rate into consideration)

• it does not corrupt the correct packets in the process of recovering the lost

packets.

The problems inherent in the packet video are packet loss and packet delay. It is

therefore necessary for coding techniques compatible with packet video to consider

these problems.

A simple technique to protect the information packets is to add parity packets to

the existing information packets. A lost or delayed packet could then be recovered

by initiating error correction. This scheme however has a disadvantage in that it

increases the number of packets transmitted and hence contributes to the loss of

packets. However a good error correction scheme is suppose to more than make up

for the loss of packets due to increased rate.

A single error correcting (7,4) hamming code was implemented and incorporated

with the video coder to protect the information packets. The decoder was modified

to perform error correction only when one packet was lost. This scheme was found

to work well due to following two reasons
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In packet switched networks, even with error correction protection, packet loss is

unavoidable. Hence a method of error recovery, which takes the characteristics of

video signals into account, is required. This process, known as error concealment,

attempts to recover or reconstruct the missing blocks from the structured picture

data. In this chapter various methods of error concealment are discussed. The

underlying assumptions in all these methods are

• pixels in the image are much smaller than any of the important details

• most of the pixels' neighbors represent the same structure.

A method of error concealment based on the motion estimation is proposed and the

results are presented.

24
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4.1 Intra Frame Processing

4.1.1 Block Averaging

This method of error concealment involves replacing the missing block in the frame

by the average of the surrounding blocks. The basic assumption in this method

of error concealment is that the neighboring blocks represent the same structure.

The process of averaging the surrounding blocks to replace the missing block can

be done either in the spatial domain (spatial averaging) or in the frequency domain

(spectral averaging) . Both, spatial averaging and spectral averaging, perform well

when the missing blocks are not at the edges. The figures (see Figures 4.1, 4.2)

shows a frame (Susie sequence) obtained after performing Spectral and spatial error

concealment on a frame in which 1% of the blocks were randomly thrown away.

4.2 Inter Frame Processing

4.2.1 Block Replacement

In this method the missing blocks in a frame are replaced by the blocks, in the

corresponding location, from the previous frame (see Figure 4.5). This method

would work well if there were not much motion between the two successive frames.

Figures 4.6, 4.7 show two successive frames without significant motion between

them. The missing blocks in the Figure 4.7 were filled by the blocks from the

preceding frame (Figure 4.6).

%
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Figure 4.1: Spatial Error Concealment (Susie Sequence)
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Figure 4.2: Spectral Error Concealment (Susie Sequence)
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Figure 4.3: Spatial Error Concealment (Football Sequence)
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Figure 4.4: Spectral Error Concealment (Football Sequence)
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The missing blocks in Figure 4.9 were filled by the corresponding blocks from the

previous frame (see Figure 4.8). This is an example where there is a significant

motion between two successive frames.

r 4.3
Error Concealment Model Based on Motion Esti-

mation

F_

Since the frames of a video coded sequence are motion compensated, it is necessary

to consider the type of the frame before performing error concealment. The motion

compensation model for the video coded sequence is shown in Figure 3.2. This model

divides a motion sequence into three different types of frames which are intraframes,

forward predicted frames and bidirectionally predicted frames (refer to section 3.2).

The flowchart of the model (see Figure 4.10) explains the various steps involved

in the error concealment for different types of frames (I, B or P). This model takes

advantage of the fact that most frames in a motion sequence look alike, and uses the

information from the previous and/or next frames to fill up the missing blocks in

the frame (present). This model estimates the motion of the present frame (frames

with the blocks missing) with the previous and/or the next frame (depending on the

type of the frame) and compares it with a threshold (T) (to take care of the scene

changes or significant motion).

Intraframes:
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Figure 4.5: Replacing Blocks From Previous Frame
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Figure 4.6: Replacing Blocks From Previous Frame (no significant motion between

frames): Previous Frame
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Figure 4.7: Replacing Blocks From Previous Frame (no significant motion between

frames): Present Frame
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Figure 4.8: Replacing Blocks From Previous Frame (significant motion between

frames): Previous Frame
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Figure 4.9: Replacing Blocks From Previous Frame (significant motion between

frames): Present Frame
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Figure 4.10: Flowchart of Error Concealment Model
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The intraframes are error corrected before performing error correction on the forward

predicted and bidirectionally predicted frames. These frames were reconstructed by

estimating the motion with the previous forward predicted frame.

Forward Predicted Frames:

The forward predicted frames are error reconstructed using the information from

the previous intraframe. Again motion is estimated between the two frames before

replacing the missing blocks.

Bidlrectionally Predicted Frames:

To reconstruct the missing blocks in the bidirectionally predicted frames the infor-

mation in both the adjacent frames was used. Motion between the present frame

and the previous frame and the present frame and the next frame was estimated.

Missing blocks in the present frame was then replaced by performing a frequency

domain interpolation between the blocks obtained from the previous and the next

frame.

The process of motion estimation involves taking the four blocks surrounding a

missing block and moving through a predefined search space (starting with the same

location) in the previous and/or the next frame and comparing the error against a

threshold (T). The threshold (T) was found to depend on the activity in the block

and variance (of the blocks surrounding the missing block) was found to be a good

estimate of the activity in the region.

The following Figures show the first twenty four frames of (original and recon-



Chapter 4. Error Concealment
38

w

structed) susie and football sequences (in which 10% of the packets were lost during

transmission).

The PSNR for the first twenty four frames before and after reconstruction for

susie and football sequences is shown in Figures 4.11 to 4.26. A significant increase

in PSNR values was observed with error concealment as can be observed from the

graphs for the first twenty four frames. The artifacts due to error concealment were

less observable in football sequence than the susie sequnce (even though the loss

of packets is roughly the same) because of the fast motion of the objects. All the

sequences used in this chapter are contained in an accompanying video tape for

subjective evaluation.
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Figure 4.11: Frames l:12(Original Susie Sequence)
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Figure 4.12: Frames 13:24(Original Susie Sequence)



Chapter 4. Error Concealmetjt
41

t .

w

w

•., ._i:_N_

:_:"_i

. _, ._:_;_.-_:

......... _.,:._g_..

_::'_,:_::_.:,

Figure 4.13: Frames l:12(Reconstructed Susie Sequence)
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Figure 4.14: Frames 13:24(Reconstructed Susie Sequence)
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Figure 4.15: Frames l:12(Original Football Sequence)
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Figure 4.16: Frames 13:24(Original Football Sequence)
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Figure 4.17: Frames l:12(Reconstructed Football Sequence)
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Figure 4.18: Frames 13:24(Reconstructed Football Sequence)
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Figure 4.19: PSNP_ of 1:12 frames(Susie Sequence) before Error Concealment
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Figure 4.21: PSNR of 13:24 frames(Susie Sequence) before Error Concealment
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Figure 4.22: PSNI_ of 13:24 frames(Susie Sequence) after Error Concealment
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Figure 4.23: PSNR of 1:12 frames(Football Sequence) before Error Concealment
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Figure 4.24: PSNR of 1:12 frames(Football Sequence) after Error Concealment
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Figure 4.25: PSNR of 13:24 frames(Football Sequence) before Error Concealment
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Conclusion

Packet loss in packet switched networks is inevitable even with error correction

as was mentioned before. Hence there is necessity for error concealment at the

receiver. In this thesis a method of error concealment based on motion estimation is

proposed. This method takes advantage of the fact that most frames look alike and

hence uses the information from the previous and the next frames (where possible)

to conceal the errors (missing packets) by estimating the motion. The method

proposed was implemented together with a standard MPEG video codec and tested

for its performance on two motion sequences (Susie and Football). For both the

sequences a significant increase in PSNR was observed with error concealment.

An interesting aspect of the proposed method is its response at scene cuts. It

is obvious that the motion compensation of the previous frame in such cases is

meaningless as the contents of the previous frame and the current frame are entirely
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different. This method however does work better than other error concealment

methods (which use only the past information to perform error concealment [4] ).

In some frames (particularly where the motion was complicated) this method

resulted in degradation of picture quality (as can be observed on the accompanying

video). This however can be attributed more to the poor performance of the mo-

tion estimation algorithm and the incorrect motion compensation than to the error

concealment procedure.
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Scan Predictive Vector Quantization of

Multi-spectral Images *

Nasir D. Memon Khalid Sayo

Abstract

Conventional VQ based techniques partition an image into non-overlapping blocks

which are then raster scanned and quantized. Image blocks that contain an edge, that

is, an abrupt change in intensity, result in high frequency vectors. The coarse repre-

sentation of such vectors leads to visually annojng degadations in the reconstructed

image. We present a solution to the edge degradation problem. Our approach reduces

the number of vectors with abrupt intensity variations by using an appropriate scan to

partition an image into vectors. The manner in which vectors are extracted from the

image will influence the performance of quantization schemes that are subsequently

applied to the vectors. Therefore, it is necessary to examine the problem of optimally

scanning the image in order to minimize the number of vectors with abrupt intensity

variations. In this paper we address this question and give a novel technique for ex-

tracting vectors from an image which when quantized give much better results than if

the vectors were obtained in the standard manner. Vqe show how our techniques can

be used to enhance the performance of vector quantization of multi-spectral data sets.

Comparisons with standard techniques are presented and shown to give substantial

improvements.
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1 Introduction

Vector Quantization (VQ) has been found to be an efficient image compression technique

due to its ability to approximate patterns in the source output [6]. Conventional VQ based

techniques partition an image into non-overlapping blocks which are then raster scanned and

quantized. The codebooks are constructed from averages of similar patterns in a training

set. Because of the way they are obtained the codebook vectors tend to be smooth. Even

when explicit efforts are made to include high frequency vectors such as edge vectors, the

number of such entries are limited by the relatively small size of the codebook [15]. Therefore

the likelihood of finding a good approximation to a smooth vector is much more than that

of finding a good match to a high fl'equency or edge vector. While most blocks in an image

do not contain edges, edges are perceptually very important, and coarse representations of

these blocks can lead to a substantial degradation in perceptual quality. Furthermore, edges

are very important in a number of image processing applications, such as classification and

pattern recognition. Edge degradation can adversely effect such applications.

Various solutions have been proposed to improve edge reproduction. Some of the more

well-known ones are Classified VQ, Finite-State VQ, and Predictive VQ [1]. In this paper we

present an alternative solution to the edge degradation problem. Instead of trying to increase

the number of codebook entries which more closely match the high frequency patterns in

the input to the Vector Quantizer, our approach is to try and reduce the number of high

frequency vectors at the VQ input. Our approach minimizes the number of vectors with

abrupt intensity variations by using an an appropriate scan to partition an image into vectors.

In Figure 1 (left) we show a 5 x 5 segment taken from the Lena image plotted as a surface,

with the vertical axis representing the intensity value and horizontal axes representing spatial

co-ordinates. The segment contains an edge, that is an an abrupt change in intensity, as we

move from left to right. In Figure 1 (right) we show two different vectors that were obtained

by raster scanning the block. If we scan the block row by row, going from left to right,
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we obtain the vector plotted using a solid line. The vector formed in this manner has 4

peaks, each representing a transition from the end of one row to the beginning of another.

Alternatively, if we scan the block column by column, going from top to bottom, we obtain

the vector shown in the same plot in dotted line. This vector is much smoother than the

vector obtained using the left to right scan, and is much more hkely to have a codebook

entry 'close' to it. We can see that the manner in which vectors are formed from a block

influences the nature of the resulting vectors, which in turn can influence the fidelity of their

representation. This argument, can in fact be extended to the entire image.

Therefore, we would like to find a systematic method for scanning the image which

would result in vectors that are smooth in some sense, and therefore more likely to find close

matches. In this paper we address this question and give a novel technique for extracting

vectors from an image which when quantized give much better results compared to vectors

obtained by standard techniques.

The idea of scanning an image in an 'efficient manner' in order to improve performance
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of a compression scheme is certainly not new. In terms of practical image compression

techniques, work to date has concentrated on scanning the image using fixed scans that

exploit the inherent two-dimensional relationships that are present in image data. In fact,

the (perhaps) earliest work investigating alternative scanning techniques was done by Wyner

with the objective of scrambling video signals in order to protect against eavesdropping

[18, 19]. Later, Matias and Shamir [10] showed that using pseudo-random space filling

curves for scrambling actually results in reducing bandwidth required for transmission.

By far the most popular of such special scanning techniques have been the discrete

approximations of Hilbert and Peano space filling curves. In fact, Ziv and Lempel have

shown that the problem of optimally compressing n-dimensional data can be reduced to

that of optimally compressing a 1-dimensional string by using a discrete approximation of

a Hilbert space filling curve [9]. However, their optimality result is asymptotic and the

scheme they propose is not practically applicable to gray scale images. Nevertheless, the

Hilbert scan has been effectively used to enhance the performance of a variety of image

compression techniques. In [16] a Hilbert scan is used to rearrange pLxels prior to vector

quantization. An image compression technique based on a wavelet transform of vectors

extracted by performing Hilbert/Peano like scans is reported in [2]. Yang et. al. [20] use

Peano scanning along with fractal coding to compress still images. Cole [4] has used Peano

and Hilbert scans for data compaction of raster graphics.

In the next section we review some ideas from previous work and briefly introduce the

notion of scan models. In section three we show how scan models can be used to enhance

the performance of vector quantization of multi-spectral data sets. We present comparisons

of the proposed technique with standard techniques and show that the proposed techniques

compare favorably. Finally, we conclude in section five with a brief summary and pointers

to future work.
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Figure 3: A digital image and its difference graph

Scan Models

In this section we review scan models and related concepts from previous work [14]. We

consider a digital image P, to be an M x N array of integers such that 0 _< P[m, n] < L- 1 for

0 < m < M and 0 < n < N. The notion of 'adjacency' between pixels in an image is often

based on the 4-neighborhood model or the &neighborhood model, the adjacency graphs of

which, A4 and As, are shown in Figure 2. An image P induces a weighting function on

the edges of an adjacency graph if we assign the weight on an edge to be the difference in

intensity values of the two pixels corresponding to the vertices incident upon the edge. We

call the weighted version of an adjacency graph, induced by an image P to be the difference

graph of P. An image and its difference graph using the 4-neighborhood model are shown

in Figure 3.

Given an adjacency graph, we call any spanning tree of the graph, a scan model. A scan

model specifies an order for traversing the pixels of an image, for the given neighborhood
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Figure 4: Two prediction trees for the image in Figure 1

scheme. Standard traversal schemes like the raster scan and the Hiibert scan [91 are special

cases of a scan model. A scan model can also be viewed as a non-causal prediction model for

an image. For example, the scan model on the left in figure 4 specifies that the prediction

for pixel (1, 2) should be the intensity value of its neighbor on its left; and the right neighbor

of pixel (1, 3) is to be used as a prediction for its value and so on. In a similar manner the

prediction scheme for each pixel is specified. In this paper, we use the first interpretation,

that is, we view a scan model as specifying a traversal of an image.

If we are to use scan models for image processing tasks, then we would be interested in a

model that is optimal with respect to some objective function that depends upon the specific

application at hand. In [14] we look at a few objective functions and investigate algorithms

for constructing optimal models. What is interesting is that given our formulation, the

problems related to finding good models can be abstracted as graph problems. That is,

problems which involve constructing a spanning tree of the difference graph with desired

properties.

A natural objective function to minimize is the sum of absolute weights on the edges

corresponding to a scan model, which we call a MAW scan model. A MAW scan minimizes

the absolute sum of differences between successive pixels in the scan. Computing a MAW

scan involves finding a minimum weight spanning tree of the difference graph, after the

original weights are replaced by their absolute value. A minimum weight spanning tree of

a weighted graph can be computed in time O(MN loglog(MN)) [31. In our case, since the
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Figure 5: USC-Girl image (left) and its MAW scan (right).

graph is sparse, a minimum weight spanning tree can be computed in time O(MN log* MN)

i [5], which for all practical purposes amounts to O(MN).

An MAW scan that was constructed for the USC-Girl image is shown in Figure 5. It

can be seen that unlike statistical models like context based models and linear models, scan

models are essentially 'structural' in nature. They capture the essential two-dimensional

structure inherent in an image. Hence, they could be potentially of use in a variety of image

processing tasks. In previous work we have investigated their application to lossless compres-

sion of still images [13] and multi-spectral image data [12], and in lossy plus lossless image

compression [11]. In the rest of this paper we investigate their application to partitioning an

image into vectors prior to quantization.

1log* n = min{i > 0 : login < 1};log i is defined by log 1 n = logn and log TM n = log (Iog_ n)
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Image Blocks MAW Scan

USC-Girl 136 48

Couple 133 42

Girl-1 96 20

Girl-2 216 38

House 330 67

Tree 638 227

Table 1: Comparison of variance vectors from blocks and MAW scan

3 Using an MAW scan model to form vectors

As we said before, in conventional VQ techniques image blocks that contain an edge result

in high detail vectors, which usually result in visually annoying degradations in the recon-

structed image. In this section we apply the notion of a scan model to address the edge

degradation problem. Our approach minimizes the number of vectors with abrupt intensity

variations by using an MAW scan to partition an image into vectors.

An MAW scan by definition minimizes differences between successively scanned pixels.

Hence vectors formed by taking k successive pixel values along an MAW scan will be highly

correlated and can be clustered and quantized with lesser distortion. In order to test this

hypothesis we performed the following experiment on a standard test set of 256 x 256 RGB

images taken from the USC database. We first partitioned the image into 4 × 4 blocks and

computed the variance of each block. The mean of the variance values, rounded to the

nearest integer is shown in the first column of table 1. We then computed an MAW scan for

the image and formed vectors of dimension 16 by performing a depth-first traversai of the

MAW tree. The variance of each vector was computed and the mean value is shown in the

second column of table 1. It can be seen that vectors obtained from an MAW scan contain

much less activity than those formed from k × k non-overlapping blocks.

In order to test our second hypothesis that for a fixed bit rate, vectors formed from

MAW scans can be quantized with lesser distortion as compared to k x k blocks we per-

8
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Image Block VQ Scan VQ

SNR PSNR SNR PSNR

USC-Girl 21.02 30.35

Couple 16.33 31.72

Girl-1 27.93 32.99

Girl-2 27.93 32.99

House 26.37 31.31

Tree 21.21 26.02

22.79 32.09

19.26 34.61

31.61 36.63

31.61 36.63

27.50 32.44

22.87 27.69

Table 2: Comparison of SNR and PSNR for Block VQ and Scan VQ.

w

formed another experiment. Here, we first used the Generalized Lloyd's algorithm (GLA)

for generating a codebook of size 256 for each of the test set of images. Since the test im-

ages were color images represented in the RGB domain, we took the green band for the our

experiments. Vectors were formed by raster scanning 4 x 4 blocks. Column 2 and 3 of table

2 show the SNR and PSNR values obtained by encoding each of the images with its local

codebook.

We next used an MAW scan to form vectors which were then clustered by the same

Generalized Lloyd's algorithm to form a codebook of the same size and dimension. Columns

4 and 5 of table 2 show the SNR and PSNR values obtained by encoding each of the images

by its own local codebook. We see a significant increase in SNR and PSNR obtained when

vectors formed by using an MAW scan are quantized. We would like to point out that the

images have each been encoded by using local codebooks, that is a codebook generated from

the image itself. This would not be done in practice but our intention in this section was

only to demonstrate the validity of our approach.

The problem with using scan models for forming vectors prior to quantization is that an

optimal scan model will vary from image to image. Hence an encoding of the scan has to

accompany an encoding of the image. Unfortunately, due to the large number of possible

scans, the cost of encoding a scan is usually more than 1.5 bits per pixel [14]. Hence our

approach can not be used for single frame images in a straight forward manner. For multi-



spectral data sets however,the cost of encoding a scan can be avoided by making use of

spectral correlations. In the next section weshowhow this can be done.

4 Scan Predictive VQ

w

w

r

2

Compression is generally achieved by removing inherent redundancies present in data. In the

case of a multi-spectral data set, there are two sources of redundancy - spatial redundancy and

spectral redundancy. By spatial redundancy we mean correlations among spatially adjacent

pixels in the same spectral band. By spectral redundancy we mean correlations among pixels

that have approximately the same spatial location but are in adjacent spectral bands. While

spatial correlation is adequately exploited by standard Vector Quantization (VQ) techniques,

variations of VQ that exploit spectral correlations have started emerging only recently.

Gupta and Gersho [8] have recently proposed a paradigm for vector quantization of

multi-spectral data called Feature Predictive Vector Quantization. They point out that the

conventional approach to vector quantization of multi-spectral data by forming a vector that

spans spectrally adjacent blocks leads to high comple:dty with reasonable block sizes. For

example, if we take a block size of 4 x 4 and form a vector X by concatenating blocks X1

and X2 from two spectrally adjacent bands leads to a vector X = (X1, X2) of dimension 32.

A bit rate of 0.5 bits per pixel then requires a codebook of size 65,536. In order to alleviate

this problem they extract a reduced dimensionalky feature vector U from X and transmit

a quantized version of U from which an estimate ,'( of X is formed by the receiver. In this

section we present Scan Predictive VQ, a compression technique for multi-spectral data sets

that is based on the notion of scan models. The scheme retains a manageable comple:dty in

terms of vector dimension and at the same time effectively exploits spectral correlations.

Correlations between spectral bands in a muhi-spectral data set are a result of the fact

that the bands are imaging the same physical structures. Thus while pixel values in neigh-

boring bands may be very different, the relationships between a pixel and its neighbors may

10
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Image Blocks MAW Scan Predictive Scan

USC-Girl 136 48 73

Couple 133 42 58

Girl-1 96 20 24

Girl-2 216 38 69

House 330 67 198

Tree 638 227 364

Table 3: Comparison of variance vectors from blocks, MAW scan and Predictive scan

be very similar in adjoining spectral bands. This relationship information is captured well in

by a scan model. In fact, experiments have shown that an MAW scan of one band effectively

models the image in a spectrally adjacent band [12]. The third column of table 3 shows

the mean variance for vectors formed by using the MAW scan of the red band on the green

band of the test images, a The first two columns are the same as table 1. It can be seen that

although the variance is not as low as that obtained by using an optimal scan, using the

optimal scan of the previous band to extract vectors does lead to highly correlated vectors

as compared to using non-overlapping blocks. Similar results were obtained on the other

bands.

Hence, given a multi-spectral image, the first image in the sequence can be compressed

and transmitted by any conventional method and subsequent to that we can use the optimal

model of the ((k - 1) th) previous image on the (k th) current image in the sequence in order

to form vectors of the required dimension. These vectors can then be quantized by any

of the vector quantization techniques described in the literature. This approach gives us

a simple and efficient backward adaptive technique that exploits both spatial and spectral

correlations. By backward adaptive we mean an adaptive technique in which both the

transmitter and receiver are in possession of the information necessary for adaptation. This

happens when the output of the transmitter (which is also available to the receiver), is used

aA color image in the ROB domain is essentially a multi-spectral image formed by three sensors responding

to a narrow band of wavelengths centered around 700 nm (red), 546.1 nm (green) and 435.8 nm (blue)
respectively.
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for future adaptation. This has the advantage of obviating any necessity for transmission

of additional or 'side' information. However, as the current information can only be used

for future adaptations, there is necessarily a delay in the adaptation process. We call this

technique Scan Predictive Vector Quantization (SPVQ). Note that there is no cost incurred

in encoding the scan, since it is being constructed from the previous image.

The codebook for Scan Predictive VQ is desi_aed by using a GLA-like algorithm. The

design can be done using either an open-loop or closed-loop approach [7]. In the open-loop

approach, vectors from the current band, k are extracted by using the MAW scan of the

original band k - 1 image. These vectors are then clustered by the generalized Lloyd's

algorithm to obtain a codebook of the desired size. In practice since the original image is

not available to the receiver, reordering with an MAW scan is only possible with respect to

the reconstructed image of the previous band. Hence the codebook is not optimal for the

actual data being used. However, if the resulting reconstructed image is of sufficiently high

quality, then it would be very close to the original and the codebook should give close to

optimal quality.

The codebook can also be constructed by using a closed-loop approach. In such an

approach the codebook vectors from the current band are obtained by using an MAW scan

of the reconstructed image in the previous band. We can see that in the closed-loop design

process, the training sequence of vectors changes with every iteration and hence convergence

to a local minimum is not guaranteed. However, it has been observed in practice that the

closed-loop technique gives substantial improvement over the open-loop technique [6]. Our

experience has been consistent with this observation and hence in the rest of this paper we

report results only for the closed-loop design technique.

In table 4, we give results obtained from two test images, California and Moffet, shown

in figure 63 for different types of VQ. In each case, the codebook was generated by using the

SThematic Mapper simulator data, acquired on NASA C-130 aircraft. Original data processed by P.-S.
Yeh at NASA GSFC to approximate Landsat7 HI_ISI resolution. The California image was taken over the
San Luis Reservoir and has a ground resolution of 5.7m. The Moffet image has a ground resolution of 4.8m

12



Band Block VQ Scan Predictive VQ

SNR PSNR SNR PSNR

I 22.80 27.75

2 24.24 30.58

3 22.90 29.41

4 23.94 29.99

5 24.50 27.92

6 24.43 30.49

7 21.57 29.73

8 22.08 25.16

25.66 31.90

23.44 29.95

24.37 30.42

25.21 28.63

25.78 31.84

23.47 31.63

25.49 28.57

Average 23.38 29.02 24.77 30.42

Table 4: Comparison of SNR and PSNR for California Image.

w
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Moffet image and encoding results are presented for the California image. The Moffet image

was 350 x 512 and the California image 232 x 512. Both images had 8 spectral bands.

First we used the Generalized Lloyd's algorithm to construct a codebook of size 1024

for vectors of size 16 that were formed by raster scanning 4 x 4 blocks of the Moffet image.

The California image was then encoded by using full search VQ. Columns 2 and 3 give the

SNR and PSNR values obtained. Experiments were also performed by forming a vector that

spanned across two adjacent 2 x 4 blocks. This, however did not lead to any improvements in

SNR and PSNR values and often resulted in poorer performance. This leads us to conclude

that forming vectors by scanning two spectrally adjacent image blocks is not an effective

technique for capturing spectral correlations.

Next we designed a codebook of size 1024 from 16 dimensional vectors obtained from

a depth-first traversal along an MAW scan of the previous band for bands 2 to 8 of the

Moffet image, by using the closed-loop technique presented above. Bands 2 to 8 of the

California image were then encoded by using this codebook and quantizing vectors obtained

by a depth-first traversal of the reconstructed image of the previous band. The first band

of the California image was encoded by using the JPEG standard [17]. The particular

implementation of JPEC used in this work was a public domain implementation provided

U
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Image Bpp for Block VQ SPVQ

Red Green Blue Green Blue

USC-Girl 0.79 28.4 28.0 30.2 31.8

Couple 0.78 27.1 27.4 31.8 31.2

Girl 1 0.46 31.9 31.9 35.1 34.6

Girl 2 0.73 29.5 30.8 31.6 32.2

Average 0.69 29.2 29.5 32.2 32.5

Table 5: Comparison of PSNR Values for test images.

by the Independent JPEG Group. This implementation provides an input parameter Q, that

controls the quality and bit rate of the compressed image. A value of 50 was used for Q for

a bit rate of 1.20 bits per pixel. This gives us an average rate of 0.69 bits per pixel for the

entire image. Columns 4 and 5 show SNR and PSNR obtained. We see that an improvement

of more than 1.5 db is obtained on an average. In figure 7 we show the reconstructed band

5 of the California obtained by using conventional VQ and also the one obtained by using

the closed-loop technique. We see that the edge artifacts in the image obtained by SPVQ

are considerably reduced. Also, note from table 4 that band 5 is where the smallest gain in

SNR/PSNR is obtained by SPVQ as compared to the other bands.

We also repeated our experiments for the RGB images listed in table 1. Here, we con-

structed codebook of various sizes fi'om four images using the closed-loop design technique.

A different set of images was then Vector Quantized with this codebook. In table 5 we show

the PSNR values obtained with a codebook size of 4096 and vector dimension 16 for a few

images none of which were a part of the training set. Also, the first band (red band) for both

the images was encoded using the JPEG standard with Q = 50. The resulting bit rate for

the red band is shown in column 1 of table 5. The PSNR values for the green and blue band

are shown in columns 3 to 6. We see an improvement of 3 db can be obtained by using an

appropriate scan to form vectors. The reconstructed USC-Girl image obtained from SPVQ

and block VQ are shown in figure 5. In the image obtained by block VQ we clearly see the

staircase effect, especially near the shoulders. The image obtained by SPVQ on the other

14
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hand has no such artifacts. The original image appears in figure 5.

At this point we would like to make a couple of points. First, note that the first band

in the sequence has to be encoded by a conventional coding scheme. Hence, the quality of

the first image can potentially effect the performance of scan predictive VQ on the second

band and the quality of reconstructed image for the second band influences the quality of

the third band etc. Our experiments seem to indicate that results obtained are robust with

respect to the quality of the first image in the sequence. As long as the first image is of

reasonable quality, the quality of subsequent images, on an average, remain unaffected. Here

by reasonable quality, we mean for example, a Q factor of 50 or greater when using the

JPEG standard.

Second, we would also like to note that better PSNR values at comparable bit rates have

been reported in the literature with sophisticated enhancements to the basic VQ technique.

However, all such enhancements can easily be incorporated into the scheme presented here.

We have deliberately used simple codebook generation, organization and search techniques

so that a proper estimate of the gains made by alternative techniques of forming vectors can

be obtained.

5 Conclusions and Future Work

We have seen that scan models can be used to develop a simple and effective solution to

the problem of edge degradation encountered during vector quantization of a sequence of

correlated images, like multi-spectral images, 3-D medical images or a video sequence. An

MAW scan by definition minimizes differences between successively scanned pixels. If we

have a sequence of correlated images, then our experiments have shown that an MAW scan

of one image in the sequence effectively models the next image in the sequence. Using an

MAW scan of the previous image to extract vectors from the current image and quantizing

these vectors by usual vector quantization techniques leads to significant improvements in

performance over conventional block VQ techniques. Besides simple VQ, in future work we

15
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Figure 6: Original California (left) and Moffet (right) images, band 5.
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Figure 7: California image (band 5) at 0.75 bpp after Block VQ (left) and SP\;Q (right).

Figure 8:Girl-1 image (green band) at 0.75 bpp after Block VQ (left) and SPVQ (right).
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ABSTRACT

-n this paper, we address the problem of accessing portions of

mu-,-,band data which has been losstessly compressed. An approach
that uses the fractal property of some well known space filling curves

to a,Ade access to portions of a losslessly compressed data set is

de.,_ibed. This approach reduces the average amount of
decompression necessary to access any portion of the data set,

the-.-by reducing the amount of time required to access the
cot ;ressed data. Various tradeoffs exist which will be discussed

wifir'practical examples.

INTRODUCTION

NASA's Mission to Plaslet Earth 1 v,41] result in an enormous

inc ase in the amount of data that will need to be archived. This has

leg to an increased interest in not only more efficient lossless
compression techniques, be also in faster methods of accessing

lov1_ssIy compressed data. In particular, accessing portions of large
mC band data sets.

--Fhere are several efficient lossless compression techniques

currently available. For instance, predictive coding schemes use

pr_ ous data points to generate a prediction for the current data

va_i. The prediction error is then losslessly coded. Context based
algorithms use the neighboring data values to determine the best

en__-ding scheme. Dictionary schemes build a fibrary of previously

en,2--untered patterns which can be used to encode patterns yet to be

en_'untered. All of these techniques have one thing in common.
They use information from previous data to encode future data

va[ :s. Therefore, it is necessary to start decoding at the beginning of

th_ata set. For example, if one needed to access a 128x128 section

of band 7, of a 512x512, 7 band data set, it may be necessary to
de__ _de the entire data set.

In this paper, we present an algorithm which limits the amount of

d_'_ding necessary to access arty portion of a compressed data set.

Th,_reby, providing the user with convenient access to the data.

; .--_ ENCODING ALGORITHM

The goal of this approach is to reduce the amount of past
7

irt¢,,,mafion needed to access any particular data value in the set. This
will in turn reduce the amount of decoding necessary to retrieve any

pq-_on of the data set. This was carried out by partitioning the data
se_ ato smaller subsets and then losslessly encoding the subsets. Two

dif_rent methods of scanning the data subsets were used.

1 _is work was supported in part by the NASA Goddard Space

FF-ht Center under grany NAGS-1612.
_ 2

Partitioning the Data Set
The data set is partitioned into three dimensional subsets. For

instance, a 512x512, 7 band data set maybe partitioned into 128xi28,

1 band subsets. Figure 1 illustrates this partitioning.

12B 256 384 512
BA.ND #_6

BA.r_ f15

BAND/$4

BAND/t3

BAND #2

BAND al

BAr,ID a0 ..

128,

2.56

384

512'

Figure 1. Example of partitioned data set.

The first data value in each subset is encoded using full

resolution. The subsequent data values can then be encoded using
any lossless compression technique. For this particular work we have

used a simple predictive coding approach in which the difference

between neighboring data values are Huffman coded.
The location of the first data value in the compressed file is kept

in a code book. This allows the user to open the compressed file and

advance the file pointer to the beginning of any particular subset and

begin decoding at that point instead of starting at the beginning of the
file.

The encoding algorithm was tested on a Landsat - TM 512x512,
7 band data set. The results for various partitions are given in Table

1. As shown, the compressed file size and the additional code book

requirements increased as the size of the partitioned subsets
decreased. This indicates a trade off between storage requirements

and the ability to access small portions of data quickly.

Scanning the Subsets
Two scanning patterns were used in testing the encoding

algorithm. First, each band in each subset was scanned sequentially

using a simple raster scan. Second, the I-filbert scanning pattern was
used to scan each band in the subset sequentially.

O_G_NAL PA_



Table I.
Test results for proposed encoder algorithm using various subset sizes.

. ,,Data Subset Description

Size of Data Subset
Compressed Additional Code Book

(b_,es)
1835008

File Size Requirements

(bytes)
971895

(bytes)
0

512 rows, 512 columns, 7 bands

I2 rows, 512 columns, 3 bands .. 786432 971895- 8 " '

_-12 rows, 512 columns, 2 bands 524288 971895 12

512 rows, .5.12 columns , 1 band 262 I44 971895 24
56 rows, 256 columns, 3 bands 196608 "'• 974040 44

-,_56 rows_ 256 columns, 2 bands .131072 974040 60
256 rows, 256 columns , 1 band

28 rows, 128 columns, 3 bands
65536 974040 108

49.!.52 978028 188

32768 978028 252

978028

985164
985164'

;_28 rows, 128 columns, 2 bands

128 rows, 128 columns, 1 band 16384

12288
444

764

1020

1788

8192

4096 98516464 rows, 64 columns, 1 band

-:; rows, 64 columns, 3 bands

rows, 64 columns, 2 bands

he raster scan, shown in Figure 2a, had the advantage ofF

_ein'g"easily implemented on any size subset. On the other hand,

the Hilbert scan, shown in Figure 2b, had the advantage of
tilo! rig fast access to smaller portions of data at the cost of

ncr-,.Ssed complexity and constraints on the subset size.

that each rotation of the scanning pattern doubled the sub block

size. Therefore, it is necessary to limit the subset size to a power of
two.

DECODLNG ALGORITHM

(a)

Co)
_re 2. Raster scanning pattern (a) and the Hilbert scanning

pattern Co) for an 8x8 block.

r_

_,fhe Hilbert scan pattern for a 4x4 block is shown in Figure 2b.
h_pattern is then rotated by 90 and 180 degrees to form the 8x8
ock shown in Figure 2b. The 8x8 block is then rotated 270 and

_t Jegrees to form a 16xl6 block. This process is repeated until

l_,,_-the data points in each band have been scanned. Thereby,
tbdividing the data points into even smaller sub blocks. Notice

OF _ _IAUI'Y

The decoding algorithm was set up to allow the user to retrieve
any desired data subset by specifying the coordinates of the first

data value, number of rows, colurnns and bands in the desired

subset. The algorithm then searched the code book for the start of

the encoded subsets which contained the requested data. The
algorithm did not place any restrictions on the size of the desired
data subset.

The decoding algorithm was tested on a Landsat - TM,
512x512, 7 band data set after it had been compressed into subsets

of 128x128, I band using both the raster and Hilbert scanning

patterns. Requests for data were assumed to be uniformly
distributed over the entire data set.

A set of uniformly distributed request were generated using a
random number generator to select the coordinates of the first data

value. For simplicity, the size of the requested set was held

constant at 256x256, 1 band. The number of data points decoded
to retrieve the requested sets were calculated. The re_a_Its of this

test are given in Table 2. As shown, both scanning patterns
produced approximately the same results. Therefore, if the

assumption that the requests for data would be uniformly
distributed over the entire data set was correct, the choice ot

scanning pattern would make very little difference.

Table 2. Results of uniformly distributed requests

IIII I I i I

Scanning Average Number of
Method Data Points Decoded

I-filbert scan 123100

Raster scan 122522

However, if the request for data are assumed to be centered

around some point of interest in the data set, the assumption of a
uniform distribution is incorrect and the choice of scanning patterns
may be important.



A moreaccuratemodelof therequestsmaybe a normal
di_"_bution,aroundthepointof interest. A 'smart'encoding
algorithmwasdevelopedtotestthis theory.

'SMART' ENCODLNG ALGORITHM

The 'smart' encoding algorithm starts by encoding the data set
us g the method just described Mth one added feature. Each

pa_tioned subset is subdivided into sub blocks and as requests for

the" data are processed, a frequency count of the number of times

ca_ sub block is accessed is kept.

_Afler a sufficient number of requests have been processed, the

data set is re-encoded and each subset is scanned with the pattern
w; :h provides the most efficient access based on past requests. A
nu..,ber which identifies the scanning pattern is encoded in the

compressed file at the beginning of each subset followed by the first

da'- value in the subset. Four different sets of 'smart' scanning
pa _ irns were developed.

_-"In order to simulate past requests, a set of I000 blocks whose

first pixel location was normally distributed around the point
122 i128 with a variance of 128 was generated. For simplicky, the
req_2sted blocksize was held constant at 256.,0.56, 1 band.

Once the data set had been re-encoded, each of the four 'smart'

sc, ning patterns were tested by calculating the number of data

p_ _ts that needed to be decoded to retrieve a test set of normally
dis_buted requests. The test requests were normally distributed
ara_md the point 128x128 with a variance of 256. The results of

th,_ bur 'smart' scanning patterns are given in Table 3.

--Notice that there is an increase in storage requirements of
approximateIy 16 bytes per subset. This is due to the need to store
th_ i-equency counts.

Pattern #1

The first set of 'smart' scanning patterns, shown in Figure 3,
us; the Hilbert scan with the processing order of the first sub

bI_eks determined by the frequency count. There were a possibility
of eight different patterns, therefore, three bits where used at the

be- truing of each subset to identify which pattern was being used.

_The results shown in Table 3, indicate that approximately 20
thousand fewer data points were decoded using this method when
co- pared to the original Hilbert or raster scan.

PaTfern #2

The second set of'smart' scanning patterns, shown in Figure 4,
us---:= the raster scan with the processing order of the rows and

c¢,,,_nms determined by the frequency count. There were a

possibility of only four different patterns, therefore, only two bits

w[ -e used at the beginning of each subset to identify which pattern
w(, 2used

--The results shown in Table 3, indicate that these scanning

pa'serns provided a savings of approximately 12 thousand data
pc ts over the scanning patterns used in the first set.

Pattern #3

:_Frequencies for the corner second sub blocks where calculated

fo_.._he third set of'smart' scanning patterns. The scanning patterns

used the Hilbert scan with the processing order of the second sub

bl,--ks determined by the frequency count. There were 16 possible

sc2-ning patterns, the eight used in the first set and the eight
a_tional patterns shown in Fibre 5. Therefore, it was necessary

to use four bits at the be_nning of each subset to identity which
pattern was used to encode the subset.

The results shown in Table 3 indicate only a slight
improvement over the patterns used in the previous method.

m

3

m

4

m

Figure 3. Hiibert scan with procession order of first sub blocks

determined by frequency count.

Pattern #4

A close examination of the previous three methods revealed

that certain types of requested where handled more efficiently by

the Hilbert scan and others by the raster scan, as shown in Figure 7.

Therefore, the fourth set of 'smart' scanning patterns used a
combination of the two patterns. The scanning patterns used

consisted of the four patterns shown in Figure 4 and four new
patterns which started at each corner and scanned the subset as

shown in Figure 6. There was a total of eight different patterns,
therefore, only three bits were used at the beginning of each subset

to identify which pattern had been used to encode the subset.

The results shown in Table 3 indicate that this set of scanning

patterns produced a significant decrease in the number of data
points decoded to retrieve the requested data sets.
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CONCLUSION

An approach to decompressing portions of losslessly

c¢ :pressed multi band data was presented. The proposed
al_'oach first partitioned the data set into three dimensional

subsets and encoded the first data value with full resolution. The

1o tion of the first data value in the compressed file was then
aQ..x:l to the code book. Therefore, any subset could be accessed

by opening the compressed file and advancing the file pointer to the

lo:-fion of the first data value and begin decoding there opposed to

st I !ing at the beginning &the compressed file.

The algorithm was first tested by assutning that requests for
the data would be unifom'dy distributed over the entire data set.

Both the Hilbert and raster scanning patterns were used to encode

the data set. Both scanning patterns produced approximately the
same results.

The request were then assumed to be normally distributed
around a particular point of interest in the data set and a 'smart'

algorithm was developed to select the scanning pattern which

provided the most efficient access to the data, based on previous
requests. This 'smart' algorithm used properties of both the Hilbert

and raster scanning patterns and provided significantly better
results.

Table 3. Results of'smart' scanning patterns

Scanning
Method

Original ttilbert scan.

Oi-iginal raster scan.

Hilbert scan with processing order of first

sub blocks determined__by frequency count.
Raster scan with procession order of rows

= and columns determined by frequency count.

:_ Hilbert scan with processing order of second

sub blocks determined by frequency count.
Combination of Hilbert and raster scans with

_ processing order of sub blocks, rows andcolumns determined b)_ frequency count.

Average Number of
Data Points Decoded

122345

123020

101012

89400

88069

70291

Additional Storage Requirements

per Partitioned Subset

4 Bytes

4Bytes

20 Bytes, 3 Bits

20 Bytes, 2 Bits

20 Bytes, 4 Bits

20 Bytes, 3 Bits

w

m
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Compression of Color-Mapped Images

Andrew C. Hadenfeldt, Member, IEEE, and Khalid Sayood, blember, IEEE

Abstract--Multispectral data is often displayed and stored as
a color-mapped or pseudo-color image. Pseudo-color is also
used to enhance features in a single-band image. The use of
pseudo-color tends to rearrange the structure in the image in
such a way as to prevent efficient compression. This structure
can be restored by sorting the color maps. Restoration of the
structure increases the efficiency of lossless compression and
permits the use of lossy compression algorithms. The latter
benefit is especially useful for many progressive transmission
algorithms.

I. INTRODUCTION

ULTISPECTRAL remotely sensed data are often
displayed as composite images on color monitors.

These composite images are generated by treating three

spectral bands of the multispectral dataset as the red,

green, and blue planes of an RGB image. If the pixels in

each plane are represented by 8 b, each pixel in the com-

posite image is represented by 24 b, allowing a total of
224 colors to be displayed. More expensive systems may

use more than 24 b/pixel. A disadvantage of the full-color

display is the large amount of memory required to repre-

sent an image. This memory must be quickly accessible

to allow real-time updating of the CRT, making full-color

image displays costly. Also, the images involved require

large amounts of storage space, whether in display mem-

ory or on a mass-storage device. A less expensive solution
is needed.

Many commercial image processing and geographic in-

formation systems (GIS) use a pseudo-color or color-

mapped frame buffer. The values stored in memory are
used as indexes into a 24-b table, the color map. Each

entry in the color map consists of 8-b values for the red,

green, and blue portions of the pixel. The color-mapped

system allows the display of a small number of colors at
a time, 28 for the system shown in the figure, which can

be selected from a larger set of colors (224 for this exam-

ple). By careful selection of the colors in the color map,

a large Variety of images can be displayed, often with

quality approaching that of a full-color display system.
The color map is obtained through a quantization process,

the goal of which is to select the most "representative"
256 colors from the available colors. The color-map gen-
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by the NASA Lewis Research Center under Grant NAG 3-806.
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K. Sayood is with the Department of Electrical Engineering, University
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eration algorithms do not attempt to put the color-map

entries in any particular order. Unfortunately, this lack of

order makes compression more difficult.

Perhaps the most useful trait of image data used in im-

age compression is the pixel-to-pixel correlation. For an
achromatic image, this means that the integer pixel values

(which describe the intensities of the pixels) will be nu-

merically similar for spatially adjacent pixels. For a full-

color image, a similar condition exists for adjacent pixels
on individual color planes. In a color-mapped image, the

values stored in the pixel array are no longer directly re-

lated to the pixel intensity (or the magnitude of one of the

color components). Two color indexes that are numeri-

cally adjacent (close) may point to two very different
colors. Hence, the correlation between pixels appears to

be lost. This makes compression of these images very dif-

ficult. With the arrival of instruments that generate im-

ages with higher spatial resolution, and significantly more

spectral bands, compression of these images has become

an important problem.
For most compression algorithms to work there has to

be some correlation structure in the data. The structure in

the color-mapped image still exists, but only via the color

map. Therefore for compression, this structure has to be
reintroduced into the image. We show that the reintro-
duction of structure can be accomplished by sorting the

color map. In this paper we study the sorting of color maps

and show how the resulting structure can be used in both

the lossless and lossy compression of images.

The sorting procedure is described in the following sec-
tion and the lossless and lossy compression results are

presented in Sections III and IV, respectively.

II. COLOR-MAP SORTING

Sorting the color map can be done to satisfy one of two

possible goals. The first is the desire to restore the cor-

relation among the pixels to allow them to be efficiently
coded, i.e., a reduction in the differential entropy. The

second goal is to allow the introduction of small errors in
the color index values, such as those resulting from quan-

tization, without a large reduction in the subjective image

quality. Even in this latter case, the desire for entropy
reduction is implied since that is the purpose of quanti-

zation. These two goals conflict somewhat since the sen-

sitivity of the eye to color errors is dependent on many
things. It will be useful to find a solution that satisfies

both of these goals to some degree.

Color-map sorting is a combinatorial optimization

0196/2892/94504.00 © 1994 IEEE



H.-\[._ENFELDTANDSAYOOD:COMPRESSIONOFCOI.OR-MAPPEDIMAGES 535

pi 91era. Treating the K color-map entries as vectors, the

pa_.31em is defined as follows. Given a set of vectors {al,

a2, " " ", ah.} in a three-dimensional vector space and a
d' ance measure d(i, j) defined between any two vectors

a, nd aj, find an ordering function L(k) that minimizes
the total distance D:

K-I

D = _ d[L(k), L(k + 1)]. (I)
k=l

"I'h_ ordering function L is constrained to be a permutation
d :he sequence of integers { 1, • • • , K}. Another pos-

srmlity results when the list of color-map entries is con-

sidered as a ring structure. That is, the color-map entry

s] cified by L(K) is now considered to be adjacent to the

e__.ry specified by L(1). In this case, an additional term of

d[L(K), L(1)] is added to the distance formula D.

The sorting problem is similar to the well-known trav-

e_ !g salesman problem, and is identical if the color map
ts considered as a nng structure. As such, the problem _s

lv'gwn to be NP-complete [1], and the number of possible

o erings to consider is 1/2[(K - 1)!] [6]. Algorithms
e'x-_st that can solve the problem exactly [2], [6]; however,

these algorithms are computationally feasible only for K

W_greater than about 20. Efficient algorithms for locating
a....-3cal minimum exist [6] for K _< 145. For large color

maps such as K = 256, another approach is necessary.

T 'o techniques were tested. The first is a "greedy" tech-

rlue, discussed in Section II-A. The second involves an

aT'ggorithm that has performed well in practice, a technique

known as simulated annealing. Simulated annealing was

c 9sen as the sorting method for the color maps in this

paper and is described in more detail in Section II-B.

To complete the problem definition above, the distance

'7 ?:tric d must be determined. There are several possibil-

____:sdepending on the color space used. For the present

paper, the distance metric was chosen to be an (un-

,._3ighted) Euclidean-distance, and different color spaces
• :re investigated. Three color spaces were selected: the

_tI"FSC RGB space, the CIE L*a*b* space, and the CIE

[..*u'v* space. The NTSC RGB space was chosen since

_icorresponds to the primary colors of the original im-
bues. Color spaces that can be linearly transformed to the
NTSC RGB space were not considered, since the use of

-_ unweighted Euclidean distance measure would give

,..xailar results for such a color space. The two CIE color

spaces were selected since they provide a means to mea-

_"re perceptual color differences.

A. Greedy Sorting Algorithm

The first color-map sorting algorithm investigated was

greedy algorithm. As the name implies, this is simply a
"take what you can get" approach. The algorithm begins

__,y selecting a starting node (i.e., a color vector). From
)is node, proceed to a node that has not yet been visited

"try selecting the path with the least cost. For the color-

map sorting problem, the "cost" is the distance between

_:je colors, the function d(i, j) defined in (1). The algo-
r

rithm proceeds until all nodes (colors) have been visited.

To avoid any penalties due to the choice of the starting

node, a path was formed starting at each of the 256 nodes.

From the 256 paths, the path of least cost was then se-
lected.

Tests using the greedy sorting algorithm indicated that

it was not very successful in sorting the color maps. The

resultant images were still quite sensitive to small errors

in the color indexes, and had high differential entropies.

The simulated annealing algorithm in the next section was

able to provide better results in both categories.

B. Sorting Using Simulated Annealing

Simulated annealing [I], [7] is a stochastic technique
for combinatorial minimization. The basis for the tech-

nique comes from thermodynamics and observations con-

cerning the properties of materials as they are cooled. The

technique described in this section is based on the imple-

mentation in [7].

In the traveling salesman problem, the goal is to visit

each city only once and return to the original city with a

minimum path cost. Similarly, solving the color-map

sorting problem involves selecting each color only once
while minimizing the sum of the distances between the

colors. To find a solution using simulated annealing, an

initial path through the nodes (cities, colors) is chosen,
and its cost computed. The algorithm then proceeds as

follows:

1) Select an initial temperature Tand a cooling factor

2) Choose a temporary new path by perturbing the

current path (see below), and compute the change in path

cost A E = E,¢w - Eold. If A E < 0, accept the new path.
3) If _E > 0, randomly decide whether or not to

accept the path. Generate a random number r from a uni-
form distribution in the range [0, 1), and accept the new

path if r < exp (-AE/T).
4) Continue to perturb the path at the current tem-

perature for I iterations. Then, "cool" the system by the

cooling factor T,_w = _Told. Continue iterating using the

new temperature.
5) Terminate the algorithm when no path changes are

accepted at a particular temperature.

The decision-making process is known as the Metrop-

olis algorithm. Note that the decision process will allow

some changes to the path that increase its cost. This makes

it possible for the simulated annealing method to avoid

easily being trapped in a local minimum of the cost func-
tion. Hence, the algorithm is less sensitive to the initial

path choice. Aarts and Korst [1] show that if certain con-
ditions are satisfied, the simulated annealing technique can

asymptotically converge to a global optimum. Even in
cases where it does not converge to the optimum, the

method often provides high-quality solutions.
In the above description, initial values for T, c_, and I

need to be selected. Selection of these values requires

some experimentation, although a few guidelines are pro-
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vided in the references. In this work, initial values of T

ranged from 80 to 500, depending on the color space used.

The cooling factor a was usually chosen as 0.9. The sim-

ulated annealing algorithm seemed to be most sensitive to
the choice of this value, as values outside the range (0.85,

0.95) caused the cooling to occur too slowly or too

quickly. The number of iterations per temperature I was
chosen as 100 times the number of nodes (colors), or

25 600. However, to improve the execution speed of the

algorithm an improvement suggested Press [7] was added,
which causes the algorithm to proceed to the next tem-

perature if (10) (number of nodes) = 2560 successful path

changes are made at a given temperature.
Also, a method for perturbing the path must be se-

lected. In this work, the perturbations were made using

the suggestions of Lin [6], [7]. At each iteration, one of

two possible changes to the path are made, chosen at ran-
dom. The first is a path transport, which removes a seg-

ment of the current path and reinserts it at another point

in the path. If we think of the color map as an array, this

corresponds to moving a segment of the array to a differ-

ENTROPIES

Image

L_n3

Park

Omaha

Lincoln

TABLE I

iF TIlE SOURCE IMAGE5

Ilo Ilt

7.617 7.413

7.470 7.797

7.242 7.165

5.9 | 6 6.674

a row-by-row (or column-by-column) manner, a first-or-
der differential entropy HI can be defined on an alphabet

D consisting of the 2 R - 1 possible differences betv,'een

the elements of alphabet S:

2R- 1

Hi = - _ P(Dj) log, P(Dj) bits. (3)
j=!

These quantities were computed using the index arrays for

four test images and are listed in Table I. The Lincoln and

Omaha images were constructed from channels 2, 3, and
4 of a thematic mapper simulator (TMS) image and are

ent location in the array. The "hole" left in the array is shown in Fig. 1. The Lena and Park images are well-

filled up by sliding the components of the array down or _ known standard images.
up (depending on the new insert location). The location The color maps for these images were sorted using sire-

of the segment, its length, and the new insertion point are
chosen at random. The second perturbation method, called

path reversal, removes a segment of the current path and
reinserts it at the same point in the path, but with the nodes

in reverse order. The location and length of the segment

are again, randomly chosen.
The algorithm outlined in the previous paragraphs for-

mulates color-map sorting as a traveling salesman prob-

lem. This type of problem usually assumes a complete
tour will be made (i.e., the salesman desires to return to

the original city). Hence, the color map is assumed to

have a ring-like structure. However, the simulated an-

nealing technique can also be used if this is not the case,

allowing the color map to be considered as a linear list

structure. Experiments using both structures were con-

ducted.

III. COLOR-MAP SORTING AND LOSSLESS COMPRESSION

A measure that is used to describe the statistical prop-

erties of an image is its entropy. Entropy provides a mea-
sure of the randomness of a source, based on an assumed

model for that so,urce. It also provides an estimate of the

number of bits per sample required to code the source.

Treating the image as a memoryless source with an al-

phabet S containing R symbols, the zeroth-order entropy

H0 is defined as
R

Ho = - _ P(Si) log2 P(Si) bits (2)
i=l

where P(S_) is the probability of occurrence of symbol S;.
If there is a correlation between adjacent pixels, another

possibility is to consider a first-order model for the image.
If the image is transmitted as a one-dimensional source in

ulated annealing in the RGB and L*u*v* space. The effect

of the sorting on the color map is shown in Fig. 2. Fig.

2(a) displays the colors of the 256 indexes of the color

map for the Omaha image before sorting, while the colors
of the 256 indexes after sorting are shown in Fig. 2(b).

The effect of the sorting has been to make "neighboring"

index values correspond to colors that are also close in a

perceptual sense.
The numerical effect of sorting the color maps of the

test images using simulated annealing are shown in Table
II and Table III. Results for sorting the color map as a

circular ring structure are shown in Table II, while the

results of sorting the color map as a linear structure are
shown in Table III. Values are given in the tables for the

resulting first-order entropy and the final path cost (the

distance measure D).
Note that the zeroth-order entropy H0 is not changed by

the sorting process, since permuting the color-map entries

does not change the frequency of the occurrence of a par-
ticular color. The lower first-order entropies of the re-

sultant images indicate that some of the spatial correlation
between color indexes has been restored in each case. The

sorting results for the NTSC RGB space show that sorting

in this space yields good results, if entropy reduction (the

first goal stated above) is the goal. However, the L*u*v*

space sorting gives better results, with the added advan-

tage that the perceptual differences between color-map en-
tries have been considered. Hence, the resultant images

from this sort should also be able to accept quantization

errors while maintaining good subjective quality, the sec-

ond goal stated previously. We examine this further in the
next section. Comparing the results shown in Tables I-

III, v:e can see that the sorting of the color map has re-

sulted in a drop in entropy of 2 b/pixel for the Lena image
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TABLE II

RF-L L T x\ I I',i_(;_ "_ _ i; ii CIRC'I 1,"_RL_ S,)RTi-!) COLOR _I .XPS

t

1
? "2 (, 325

• '2 55;."

L%'b STacc t L'u'v" Space [ LZW (GIF)

C ..... i_ H' i

6..

.... _, _ ,:, _ 06 5.47_. 5,74

lZn=_¢

Co_t fi_ C_st

I1 _ 5.933 Y¢331

15 66 6.775 19219

IO_l 6 55_ :_366

10 Cl 6120 _0.I,5.4

TABLE Ill
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RGB S_ace L%'b Space y L%'v" Space

i

IIi i Cm_i
R_

i

5575 _'7.29 _,512

6 2:_0 l SF,_ if 6.546

6532 1C,(_ ".) 6.199

5.774 117? ;.') 5.735
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and 1-1.5 b/pixel for the other images. Entropy coding

techniques such as Huff'man coding and arithmetic coding

permit the lossless encoding of data close to entropy.

Therefore, we can treat the entropy figures as estimates

of the coding rates. For 512 x 512 images a savings of

1-2 b/pixel translates to a savings of between 32 768 to

65 536 bytes/image. For a large database of images this

could be a considerable saving. As many remote sensing

applications require large repositories of images, using

sorted color maps can lead to a significant reduction in

storage requirements.

For comparison, the images were also compressed us-

ing the Lempel-Ziv algorithm used in the GIF format [3].
The numbers shown in Table II were obtained after re-

moving the overhead included in all GIF files. The per-
formance of the Lempel-Ziv scheme is between 0.25 and

1 b/pixel worse than the differential entropy of the sorted
images.

IV. COLOR-MAP SORTING AND LossY COMPRESSION

NASA's earth observing system (EOS) will result in

even larger archives of remotely sensed images. In order

for remote users to easily access these images, a

"browse" facility that allows the user to quickly access

low-resolution versions of the images is a necessity. Cur-

rently, in the global land information system (GLIS) the

browse facility is implemented by only storing previously

subsampled low-resolution versions of the images on-line.

Browse features that allow on-line delivery of full reso-

lution images can be implemented through the use of pro-

gressive transmission. In most progressive transmission

schemes, images compressed using lossy compression

techniques are first sent to the remote user. If the image

is what the user is looking for, he or she can request that

the image be refined by sending more information. For

standard pseudo-color images, lossy compression (with

even little loss) would result in the destruction of most of

the features of the image. This is evident from the image

in Fig. 5(a), where the three least-significant bits have

been dropped from the image using unsorted color maps.

The sorting of the color map restores some perceptual

structure to the color-map indexes in the sense that in-

dexes close in numerical value are also close in some per-

ceptual sense. Therefore, it should be possible to intro-

duce errors into the indexes without destroying the image.

To verify this hypothesis, we dropped the three least-sig-

nificant bits of the L*u*v*-sorted Omaha image. Good

subjective results were obtained using quantization levels

down to as low as 5 b/pixel from the 8-b original. Fig. 3

shows the result of quantizing the Omaha image to
5 blpixel, before and after the color map has been sorted.

Notice that the image in Fig. 3(a), which used the un-

sorted color maps, displays severe distortion obscuring

most of the image, while the image in Fig. 3(b), which

used the sorted color map, suffered only minimial degra-
dation. Several caveats are in order here. While the dis-

tance between the 8-b indexes have more perceptual

Fig. 3. (al On;:_h:l image _,]:k tln-.oildd co,or map tltianlizt?c! IO 5 13. (b)
Omaha itna_d _ "_" -.o_,2d cl_tor m;_p qt.lanlizcd Io .r, b.. ,L. , .

meaning after sorting, the sorted color-map image should
not be assumed to ha\c the same properties as an 8-b

monochrome image. In some cases, if the distance be-

tween the original and reconstructed Icomprcsscd and de-

compressed) indexc., i, large en,_ugh, there might be a
drastic change in color between those pixcls in the origi-

nal and reconstructed imugc, which would be immedi-

ately apparent In the m.,_nochrome case large distances

would correspond t_ ch.mgcs in ._h:_ding. which might be

overlooked b\ the vicx_cr...XI,,_, if the _r'iginal I noncotor-
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mapped) images are available, better compression per-
fomlance would be obtained by compressing the original

irnage than by compressing the (sorted) color-mapped im-

age.
To see how well the sorted color-mapped images lend

themselves to lossy compression we compress them using

particular implementations of two popular lossy compres-
sion techniques, the discrete cosine transform (DCT) and

differential pulse code modulation (DPCM).

A. DCT Coding of Color-Mapped Images

In the DCT approach the image is divided into N x N

blocks (N is typically 8). The blocks are then transformed

using the DCT basis set. In the transform domain most of

•-- the energy is compacted into a few coefficients. The cod-

ing resources (.bits) are devoted to the coefficients with

....._higher energy so a high-energy coefficient will be quan-

•-., tized with more bits, while a low-energy coefficient will

be quantized with few or zero bits (i.e., discarded). At
: the receiver the quantized coefficients are transformed

• back to the spatial domain. The allocation of bits to the
"-" individual coefficients can be based on the average statis-

tics of the inaage (or class of images) or on the character-

_:_ istics of each individual block [5]. The latter approach is
•-., used in the recently approved JPEG standard for image

compression [ 10].

In Fig 4 we coded the Omaha image with the unsorted
• , . • I

color map at 2 b/Dxel using the JPEG algorithm. The

JPEG coding was applied to the index values leaving the

_:: color map intact. As can be seen from the Omaha image
_ shown in the figure, the river is about the only thing still
'_ visible. It should be noted that for 8-b monochrome im-

ages, DCT coding at 2 b/pixel generally provides a re-
construction that is indistinguishable from the original.

In Fig. 5 we show the same image, this time with the
sorted color map, coded at 2 and 1 b/pixel using the JPEG

algorithm.

B. DPCM Coding of Color-Mapped hnages

: i The DPCM system consists of two main blocks, the

,,.., quantizer and the predictor (see Fig. 9). The predictor uses
the correlation between samples of the waveform s(k) to

_ predict the next sample value. This predicted value is re-
>- moved from the waveform at the transmitter and reintro-

_'-_ duced at the receiver. The prediction error is quantized to

one of a finite number of values that is coded and trans-

mitted to the receiver and is denoted by eq(k). The differ-

,_ ence between the prediction error and the quantized pre-
diction error is called the quantization error, or the

quantization noise. If the channel is error free, the recon-
struction error at the receiver is simply the quantization

"-- error. To see this, note (Fig. 6) that the prediction error

e(k) is" given by

e(k) = s(k) - p(k) (4)

'The JPEG coded images were coded using software from the indepen-

dent JPEG group.
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Fig. 4. Omaha image with unsorled color map coded at 2 b/pixel using the

JPEG algorithm.

where s(k) is original signal predicted by p(k), which is

given by

p(k) = _ aqJ(k - j) (5)

g(k) = eq(k) + p(k). (6)

Assuming an additive noise model, the quantized pre-

diction error eq(k) can be represented as

eq(k) = e(k) + nq(k) (7)

where nq(k) denotes the quantization noise. The quantized
prediction error is coded and transmitted to the receiver.
If the channel is noisy, this is received as #q(k), which is

given by

gq(k) = eq(k) + no(k) (8)

where he(k) represents the channel noise. The output of

the receiver g(k) is thus given by

_(k) = p(k) + _q(k) (9)

p(k) = p(k) + np(k) (10)

the additional term rip(k) being the result of the introduc-
tion of channel noise into the prediction process. Using

(5), (8), (9), and (1 I) in (10) we obtain

_(k) = s(k) + nqfk) + n_(k) + np(k). (II)

If the channel is error free, the last two terms in (8) drop

out and the difference between the original and the recon-

structed signal is simply the quantization error.

When the prediction error is small, it falls into one of
the inner levels of the quantizer, and the quantization noise

is of a type referred to as granular noise. If the prediction
error falls in one of the outer levels of the quantizer, the
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Fig. 6. Block diagram of a DPCM syslem.

(al

- Ib}

Fig. 5. la) Omaha m_age v. ith sc, rted color map coded at 1 blplxel using

the JPEG al,gnrithm, tb_ Omaha image with :,orted color map coded at

2 b pixcl u,dng the: JPEG ,doorithm.

incurred quantization error is called overload noise. Gran-

ular noise is generally' smaller in magnitude than the

overload noise and is bounded by the size of the quanti-
zation interval. The overload noise, on the other hand, is

essentially unbounded and can become very large depend-

ing on the size of the prediction error.
In the busy regions of images, especially edges, the

prediction error is generally large, leading to large over-
load noi._e values. In monochronlc image:, those noise val-

ues result in a blurred api_ear;mce :.tl'Otlild cdges, which

may be acceptable for certain applications. However, in

color-mapped images these noise values will result in

splotches of different colors. The edge preserving DPCM
(EPDPCM) system avoids this problem by the use of a

recursively indexed quantizer [8]. [9].

For a given quantizer stepsize A and a positive integer
K, define & and xh as follows:

xh = xl + (K - I)zX (12)

where LxJ is the largest integer not exceeding x. A re-
cursively indexed quantizer of size K is a uniform quan-

tizer with step size A (the uniform spacing both between

the thresholds and between the output levels) and with xl

and &, being its smallest and largest output levels (O de-

fined this way always has 0 as an output level). The quan-

tization rule Q is given as follows. For a given input value

x we have the following:

I) If x falls in the interval [& + (A/2), xh - (A/2)],

then O(x) is the nearest output level.
2) Ifx is greater than x/, - (A/2), see ifx I _ x - xh

e [& + (A/2), xh - (3/2)]. If so. O(x) = [xh, Q(xt)]. If

not, form x,_ = x - 2xh and do the same as for x_. This

process continues until for some m, x,,, = x - _Ttv_,falls

in [xl(A/2), &, - (_,/2)], in which case x will be quantized
into

Q(x) = (<v_,,x_. • • _ ,Q(x,,,)). (13)
m times

3) Ifx is smaller than xl + (,..X/2), a similar procedure
to this is used, i.e., x,,, = x - m.x'l is formed so that it falls

in [xt + (A/2), xh - (._4./2)], and is quantized to [x t, xt,

• • • , xl, O(x,.)l.
In summary, the quantizer operates in two modes: it

operates in one mode when the input falls in the range (xt,
xh), and another when the input falls outside of the spec-

ified range.
The magnitude of the quantization error is therefore al-

ways bounded by zX/2. This attribute makes it ideal for

application to the coding of color-mapped images. An-

other advantage of the EPDPCM system is that as the

quantizer output alphabet can be kept small without in-

curring overload error, the output is amenable to entropy

coding.
Results using the EPDPCM system are shown in Fig.

7. The images in Fig. 7(a) and (b) were coded at a rate of

2 b/pixel and 1.37 b/pixel respectively.
The advantage of DPCM systems over transform cod-
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(a)

(b)

Fig.7. (alOmaha image_i_hsomet colormap coded at2 b,"pixclusing
EPDPCM _bi Omaha in;age 'aith ,,,_r'tcd cohw map coded al 1.37 b/pixel

using EPDPCM.

=

ing system_, is their low complexity and higher speed.

"- However. the reconstruction qualit_ obtained using trans-

form coding sv.,,tcms is generally significantly higher than

that of DPC.',I svstern_ at a given rate. Comparing Fig.

7(a) and (bl with Fig. 5In) and ¢bl. this is obviously not

the case ,q_r the sorted color-mapped images. In fact, the

quality. _t the 2-b EPDPCM-coded image is actually

somev, hat higher than the 2-b DCT-coded hnage. Thus,

usino_ the EPDPCM _,tcm prn,,ides advantages both in

terms of v,,mptcxit} ,_nd speed, and reconstruction qual-

ity.
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V. CONCLUSION

In this paper we have shown that the use of sorted color

maps makes color-mapped images of the type used by GIS

amenable to both lossless and lossy compression. The

sorting of the color tnaps can provide significant savings

of resources for remote sensing image archives, while

making lossy compression of color-mapped images pos-

sible. The latter fact allows for the use of progressive

transmission schemes veith pseudo-color and color-

mapped images. For lossy compression, conventional

wisdom dictates the use of DCT coding for most types of

images. However, for color-mapped images, DPCM cod-

ing might be more advantageous.
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